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ICA Mixture Models for Unsupervised
Classification of Non-Gaussian
Classes and Automatic Context

Switching in Blind Signal Separation
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Abstract—An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive
classes that are each described by linear combinations of independent, non-Gaussian densities. The algorithm estimates the density of
each class and is able to model class distributions with non-Gaussian structure. The new algorithm can improve classification accuracy
compared with standard Gaussian mixture models. When applied to blind source separation in nonstationary environments, the
method can switch automatically between classes, which correspond to contexts with different mixing properties. The algorithm can
learn efficient codes for images containing both natural scenes and text. This method shows promise for modeling non-Gaussian
structure in high-dimensional data and has many potential applications.

Index Terms—Unsupervised classification, Gaussian mixture model, independent component analysis, blind source separation,

image coding, automatic context switching, maximum likelihood.

1 INTRODUCTION

ECENTLY, Blind Source Separation (BSS) by Independent

Component Analysis (ICA) has been applied to signal
processing problems including speech enhancement, tele-
communications, and medical signal processing. ICA finds
a linear nonorthogonal coordinate system in multivariate
data determined by second- and higher-order statistics. The
goal of ICA is to linearly transform the data such that the
transformed variables are as statistically independent from
each other as possible [20], [11], [5], [10], [21]. ICA
generalizes the technique of Principal Component Analysis
(PCA) and, like PCA, has proven to be a useful tool for
finding structure in data.

One limitation of ICA is the assumption that the sources
are independent. Here, we present an approach for relaxing
this assumption using mixture models. In a mixture model
(see, for example, [12]), the observed data can be categor-
ized into several mutually exclusive classes. When the data
in each class are modeled as multivariate Gaussian, it is
called a Gaussian mixture model. We generalize this by
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assuming the data in each class are generated by a linear
combination of independent, non-Gaussian sources, as in
the case of ICA. We call this model an ICA mixture model.
This allows modeling of classes with non-Gaussian struc-
ture, e.g., platykurtic or leptokurtic probability density
functions. The algorithm for learning' the parameters of the
model uses gradient ascent to maximize the log-likelihood
function. In previous applications, this approach showed
improved performance in data classification problems [24]
and learning efficient codes for representing different types
of images [25].

This paper derives learning rules for the ICA mixture
model and demonstrates that it can accurately classify
unlabeled data using both synthetic and real data sets. Blind
source separation is also shown in nonstationary environ-
ments. This is particularly useful when abrupt changes
occur and fast adaptation to new environments is required.
The ICA mixture model can also be used to find efficient
codes to represent different image types. An example is
given for how the codes can be used as features for
unsupervised image classification and image compression.
Finally, we discuss limitations of this approach and present
future research directions.

2 THE ICA MixTurRE MODEL

Assume that the data X = {x;,...,xy} are drawn indepen-
dently and generated by a mixture density model [12]. The
likelihood of the data is given by the joint density

1. Note that an algorithm for learning the parameters is a terminology
often used in artificial neural networks that refers to a method for
estimating the parameters by iteratively updating the parameters. This
terminology is used throughout the paper and is interchangeable with
parameter estimation or gradient update rules.

0162-8828/00/$10.00 © 2000 IEEE
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Fig. 1. A simple example for classifying an ICA mixture model. There are
two classes, “+” and “0”; each class was generated by two independent
variables, two bias terms, and two basis vectors. Class “0” was
generated by two uniformly distributed sources as indicated next to the
data class. Class “+” was generated by two Laplacian distributed
sources with a sharp peak at the bias and heavy tails. The inset graphs

show the distributions of the source variables, s; i, for each basis vector.

T
p(X|©) =[] p(xl0). (1)
=1
The mixture density is
X
p(x:|©) =Y p(xt|Ck, 01)p(Ch), (2)

k=1

where © = (6,,...,0x) are the unknown parameters for
each p(x|CY, 0)), called the component densities. C, denotes
the class k and it is assumed that the number of classes, K,
is known in advance. Assume that the component densities
are non-Gaussian and the data within each class are
described by:

x; = Agsy + by, (3)

where A, isa N x M scalar matrix? and by, is the bias vector
for class k. The vector sy, is called the source vector® (these
are also the coefficients for each basis function).

It is assumed that the individual sources sj; within
each class are mutually independent across a data
ensemble. For simplicity, we consider the case where
the number of sources (M) is equal to the number of
linear combinations (V). Fig. 1 shows a simple example of
a dataset describable by an ICA mixture model. Each
class was generated from (3) using a different A, and by.
Class “0” was generated by two uniformly distributed
sources, whereas class “+” was generated by two
Laplacian distributed sources (p(s) oc exp(—|s|)). The task
is to classify the unlabeled data points and to determine
the parameters for each class, (A, by) and the probability
of each class p(Cj|x;,©) for each data point.

2. This matrix is called the mixing matrix in ICA papers and specifies the
linear combination of independent sources. Here, we refer to A as the basis
matrix to distinguish this from the word mixture in the mixture model.

3. Note that we have omitted the data index t for s, ;.
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The iterative learning algorithm (derived in Appendix A)
which performs gradient ascent on the total likelihood of
the data in (2) has the following steps:

e Compute the log-likelihood of the data for each
class:

log p(x¢|Ck, 0x) = logp(s).) — log(det |Ax|),  (4)

where ), = {A,b;}. Note that s, = A, (x; — by) is
implicitly modeled for the adaptation of A;.

e Compute the probability for each class given the
data vector x;:

__ p(xi|Or, Cr)p(Ci)
> e p(x¢|0k, Cr)p(Cr)

p(Cilxt,©) (5)

e Adapt the basis functions Aj and the bias terms by,
for each class. The basis functions are adapted using
gradient ascent:

AA} o< Vu, logp(x]0)

6
= p(Ci|x¢,©)V a, log p(x¢|Ck, br). (©)

This gradient can be approximated using an
ICA algorithm, as shown below. The gradient can
also be summed over multiple data points. An
approximate update rule was used for the bias terms
(see the Appendix for an online update version for
by and the derivations):

_ Zt ti(ck|xt7 9)
21 P(Crlxt, ©)

where ¢ is the data index (t =1,...,T).

The gradient of the log of the component density in (6)
can be modeled using an ICA model. There are several
methods for adapting the basis functions in the ICA model
[11], [10], [6], [19], [22]. One of the differences between the
various ICA algorithms are the use of higher-order statistics
such as cumulants versus models that use a predefined
density model. In our model, we are interested in iteratively
adapting the class parameters and modeling a wider range
of distributions. The extended infomax ICA learning rule is
able to blindly separate unknown sources with sub- and
super-Gaussian distributions.* This is achieved by using a
simple type of learning rule first derived by Girolami [17].
The learning rule in [22] uses the stability analysis of [10] to
switch between sub- and super-Gaussian regimes

by, (7)

AAj o< —p(Cylx;, ©) AR [T — K tanh(sy)s) — sks,ﬂ, (8)

where k; are elements of the N-dimensional diagonal matrix
K and s, = A,;l(xt —by). Wi = A,:,l is called the filter
matrix. The adaptation of the source density parameters are
the kj,;s [22]

ks = sign(E{sech2(skvi,t)}E{sz‘i‘t} - E{[tanh(sk,,;,t)]sk_i,t}).
9)

4. A distribution that is more sharply peaked than a Gaussian around the
mean and has heavier tails is called super-Gaussians (leptokurtic distribu-
tions) and a distribution with a flatter peak such as a uniform distribution is
called sub-Gaussian (platykurtic distribution).
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Four classes with different basis functions and bias vectors
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Fig. 2. An example of classification of a mixture of non-Gaussian densities, each describable as a linear combination of independent components.
There are four different classes, each generated by two randomly chosen independent variables and bias terms. The algorithm is able to find the

independent directions (basis vectors) and bias terms for each class.

The source distribution is super-Gaussian when k;,; = 1 and
sub-Gaussian when k;,; = —1. For the log-likelihood estima-
tion in (4), the term logp(s;) can be modeled as follows:

N

52,
log p(sit) ox — Z <k;” log(cosh sgi1) — kQ‘L't) . (10)

i=1

Super-Gaussian densities are approximated by a density
model with heavier tail than the Gaussian density; sub-
Gaussian densities are modeled by a bimodal density [17].
This source density approximation is adequate for most
problems [22].°> The extended infomax algorithm can be
used for finding the parameters in Fig. 1. A continuous
parameter is inferred that fits a wide range of distributions.

When only sparse representations are needed, a Lapla-
cian prior (p(s) x exp(—|s|)) or Laplacian source density can
be used for the weight update, which simplifies the infomax
learning rule:

AA; o p(Cilxt, ©) A, [T — sign(sy)s] |,

logp(si) o< = D |si] (1)

Laplacian prior.

A complete derivation of the learning algorithm is in
Appendix B.

3 UNSUPERVISED CLASSIFICATION

To demonstrate the performance of the learning algorithm,
we generated random data drawn from different classes
and used the proposed method to learn the parameters and
to classify the data. Fig. 2 shows an example of four classes

5. Recently, we have replaced this with a more general density using an
exponential power distribution [23].

in a two-dimensional data space. Each class was generated
from (3) using random choices for the class parameters. The
task for the algorithm was to learn the four basis matrices
and bias vectors given only the unlabeled two-dimensional
data set. The parameters were randomly initialized. The
algorithm always converged after 300 to 500 iterations
depending on the initial conditions. During the adaptation
process, the data log-likelihood was measured as a function
of the number of iterations as shown in Fig. 3. The arrows in
Fig. 2 are the basis matrices A; and the bias vectors by
found by the algorithm and these parameters matched the
parameters which were used to generate the data for each
class. The likelihood function usually increases monotoni-
cally, but, here, we were annealing the learning rate or
stepsize during the adaptation process and that caused the
little fluctuations. The annealing of the stepsize results in
faster convergence.

The classification was tested by processing each instance
with the learned parameters A and by. The probability of
the class p(Cy|xy, ;) was computed and the corresponding
instance label was compared to the highest class prob-
ability. For this example, in which the classes had several
overlapping areas, the algorithm was run 10 times with
random initial conditions, in which it converged nine times
to the correct solution and became stuck in a local
maximum one time. The classification error on the whole
data set averaged over nine trials was 17.8 percent
+1 percent. The Gaussian mixture model used in
AutoClass [37] gave an error of 20.8 percent £0.8 percent
and converged in all 10 trials. For the k-means (Euclidean
distance measure) clustering algorithm, the error was
36.3 percent. The classification error with the original
parameters was 15.5 percent.
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Fig. 3. The data log-likelihood as a function of the number of iterations. With increasing number of iterations, the adapted model parameters fit the

observed data and the log-likelihood is maximized.
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Fig. 4. The two observed channels z; and xz, sampled at 8 kHz. Each channel contains the voices of person number 1 and number 2 and the music

signal.

3.1 Iris Data Classification

The proposed method was compared to other algorithms on
the classification of real data from the machine learning
benchmark presented in [31]. The example given here is the
well-known iris flower data set [13], which contains three
classes with four numeric attributes of 50 instances each,
where each class refers to a type of iris plant. One class is

linearly separable from the other two, but the other two are
not linearly separable from each other. Note that, from the
viewpoint of the algorithm, the data are unlabeled and
learning is unsupervised. We applied the ICA mixture
model with the extended infomax ICA algorithm. The
algorithm converged after one hundred passes through the
data with a classification error of 3.3 percent +1.3 percent
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Unmixed speech signals
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Fig. 5. The time course of the recovered signals using the mixture model and a block size of 2,000 samples for estimating the class probability. (Top)
The two speech signals with correct labels (rectangular envelope) indicating which speaker was talking. (Bottom) The time course of the background

music signal.

compared with 4.7 percent £1.3 percent error using
AutoClass and 4.7 percent error using k-means clustering.

4 CONTEXT SWITCHING IN BLIND SOURCE
SEPARATION

The ICA mixture model can be used to automatically
identify different contexts in blind source separation
problems. Imagine there are two people talking to each
other while they are listening to music in the background.
Two microphones are placed somewhere in the room to
record the conversation. The conversation alternates so that
person number 1 talks while person number 2 listens, then
person number 1 listens to person number 2 and so on. The
basis matrix changes as a function of the location of the
speaker. In this case, the voice of person number 1 overlaps
with the background music signal with A,, while the voice
of person number 2 overlaps with the music signal with As.
Fig. 4 shows the two observed channels x; and ;. Each
channel contains the voices of person number 1 and
number 2 and the music signal. Although there are three
different source signals, at any given moment there are only
two in the observed data.

The algorithm was adapted on 11 seconds sampled at
8 kHz to learn two classes of ICA representations. The two
basis vectors A; and A, were randomly initialized. For each

gradient in (6), a stepsize was computed as a function of the
amplitude of the basis vectors and the number of iterations.

The time course of the recovered signals using the
ICA mixture model is shown in Fig. 5. The top plot shows
the two speech signals with correct labels indicating which
speaker was talking. The bottom plot shows the time course
of the background music signal.

Fig. 6 (top) shows the class conditional probability,
p(Calx¢,02) =1 — p(Ch|x4,61), for each sample (data vec-
tor) in the series. Note that a single sample typically does
not contain enough information to unambiguously assign
class membership. The intermediate values for the class
probability represent uncertainty about the class member-
ship. A threshold at p(Ch|x;,62) =0.5 can be used to
determine the class membership. Using this threshold for
single samples in Fig. 6 (top) gave an error rate of
27.4 percent. This can be improved using the a priori
knowledge that a given context persists over many
samples. This information could be incorporated into a
more complex temporal model for p(Cj), but, here, we
use the crude but simple procedure of computing the
class membership probability for an n-sample block. This
value is plotted for a block size of 100 samples in Fig. 6
(middle). The value provides a more accurate estimate of
class membership (6.5 percent error). The error rate
dropped to zero when the block size was increased to
2,000 samples (Fig. 6 (bottom)); the correct class prob-
abilities were recovered and matched those in Fig. 5 (top).
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Fig. 6. The class conditional probability p(C:|x;,62). (Top) Class probability for single samples. (Middle) Class probability for blocks of 100 samples.

(Bottom) Class probability for blocks of 2,000 samples.

The Signal to Noise Ratio (SNR)® for the experiment with
a block size of 100 samples was 20.8 dB and 21.8 dB using
the context switching ICA mixture model. Standard ICA
algorithms are able to learn only one basis matrix. The SNR
using infomax ICA [5] was 8.3 dB and 6.5 dB, respectively.

5 LEARNING EFFICIENT CODES FOR IMAGES

Recently, several methods have been proposed to learn
image codes that utilize a set of linear basis functions.
Olshausen and Field [32] used a sparseness criterion and
found codes that were similar to localized and oriented
receptive fields. Similar results were presented by Bell and
Sejnowski [6] using the infomax ICA algorithm and by
Lewicki and Olshausen [26] using a Bayesian approach. By
applying the ICA mixture model, we present results that
show a higher degree of flexibility in encoding the images.
In this example, we used the ICA algorithm with the
Laplacian prior on the source coefficients. The sparse prior
leads to efficients codes.

We used images of natural scenes obtained from
Olshausen and Field [32] and text images of scanned
newspaper articles. The data set consisted of 12 by 12 pixel
patches selected randomly from both image types. Fig. 7
illustrates examples of those image patches. Two complete

6. The SNR measures the difference in signal power between the original
signal and the noise signal. The noise signal is computed as the difference
between the original signal and the recovered signal.

basis vectors A; and A, were randomly initialized. Then,
for each gradient in (6), a stepsize was computed as a
function of the amplitude of the basis vectors and the
number of iterations. The algorithm converged after
100,000 iterations and learned two classes of basis functions.
Fig. 8 (top) shows the learned basis functions corresponding
to natural images. The basis functions show Gabor’-like
structure as previously reported [32], [5], [26]. However, the
basis functions corresponding to text images (Fig. 8
(bottom)) resemble bars with different lengths and widths
that capture the high-frequency structure present in the text
images. Note that unlike the case in k-means clustering or
clustering with spherical Gaussians, the classes can be
spatially overlapping. In the example of the natural images
and newspaper text, both classes had zero mean and the
pattern vectors were only distinguished by their relative
probabilities under the different classes.

5.1 Comparing Coding Efficiency

We have compared the coding efficiency between the
ICA mixture model and similar models using Shannon’s
theorem to obtain a lower bound on the number of bits

required to encode the pattern [29], [28].
#bits > —logy P(x¢|A})) — Nlogy (o), (12)

where N is the dimensionality of the input pattern x; and o,
is the coding precision (standard deviation of the noise

7. A Gaussian modulated sinusoid.
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ing on Route 4 over a dark and
winding mountain pass, the visitor
suddenly emerges into a “Lost Hori-
zon” world of hot springs, trout
streams and meadows of wild-
flowers, where cattle and the state’s
largest elk herd graze side by side.
But the same sense of wide-open
Western independence evoked by the
vistas has prevented the sale of the
land for years, And the deal that is
being negotiated for the ranch, which
has been owned by one family for
almost 40 years, is as much about

New Mexico, President
had Air Force One mak
fly over the ranch foral
its dominant feature —
wide crater of the dorn
Republicans, noting

one-third of New Mexi(
owned by the Federal

have long opposed |
chases. But in August
sentiment began shift
cally.

Under legislation dra
tor Pete V. Domenici, I

Western attitudes toward public land
as it is about money.

The Administration has long sup-
ported the purchase of the ranch,
which has been called “the hole in
the doughnut” because it is an island
surrounded by the Santa Fe National
Forest. Last February on a visit to

Continued on Pay

Fig. 7. Example of natural scene and text image. The 12 by 12 pixel image patches were randomly sampled from the images and used as inputs to

the ICA mixture model.

introduced by errors in encoding). Table 1 compares the
coding efficiency of five different methods. It shows the
number of bits required to encode three different test data
sets (5,000 image patches from natural scenes, 5,000 image
patches from text images, and 5,000 image patches from
both image types) using five different encoding methods
(ICA mixture model, nature-adapted ICA, text-adapted
ICA, nature and text-adapted ICA, and PCA-adapted on all
three test sets). The ICA basis functions adapted on natural
scene images exhibited the best encoding only for natural
scenes (column: nature). The same occurred when text
images were used for adapting and testing (column: text).
Note that text adaptation yielded a reasonable basis for both
data sets but nature adaptation gave a good basis only for
nature data. The ICA mixture model gave the same
encoding power for the individual test data sets and it
had the best encoding when both image types are present.
The difference in coding efficiency between the ICA mixture
model and PCA was significant (more than 20 percent). ICA
mixtures yielded a small improvement over ICA adapted
on both image types. We expect the size of the improvement
to be greater in situations where there are greater
differences among the classes. An advantage of the mixture
model is that each image patch is automatically classified.

6 DISCUSSION

The new algorithm for unsupervised classification pre-
sented here is based on a mixture model using ICA to
model the structure of the classes. The parameters are
estimated using maximum likelihood. We have demon-
strated that the algorithm can learn efficient codes to
represent different image types such as natural scenes and
text images and was a a significant improvement over
PCA encoding. Single-class ICA models showed image
compression rates comparable to or better than traditional
image compression algorithms, such as JPEG [28]. Using

ICA mixture to learn image codes should yield additional
improvement in coding efficiency.

The ICA mixture model is a nonlinear model in which
the data structure within each class is modeled using linear
superposition of basis functions. The choice of class,
however, is nonlinear because the classes are assumed to
be mutually exclusive. This model is, therefore, a type of
nonlinear ICA model and it is one way of relaxing the
independence assumption over the entire data set. The ICA
mixture model is a conditional independence model, i.e.,
the independence assumption holds only within each class
and there may be dependencies among the classes. A
different view of the ICA mixture model is to think of the
classes as an overcomplete representation. Compared to the
approach of Lewicki and Sejnowski [27], [29], the main
difference is that the basis functions learned here are
mutually exclusive, i.e., each class used its own (complete)
set of basis functions.

This method is similar to other approaches including
the mixture density networks by Bishop [7] in which a
neural network was used to find arbitrary density
functions. This algorithm reduces to the Gaussian
mixture model when the source priors are Gaussian. A
purely Gaussian structure, however, is rare in real data
sets. Here, we have used super-Gaussian and sub-
Gaussian densities as priors. These priors could be
extended as proposed by Attias [4]. The model was used
for learning a complete set of basis functions without
additive noise. However, the method can be extended to
take into account additive Gaussian noise and an over-
complete set of basis vectors [27], [29]. The structure of
the ICA mixture model is also similar to the mixtures of
factor analyzers proposed by Ghahramani and Hinton
[15]. Here, the difference is that the coefficient distribu-
tion p(s) and, hence, the distribution p(X|0) are assumed
to be non-Gaussian.

Several experiments using ICA mixture models have
been performed on benchmark data sets for classification
problems [24]. The results were comparable to or
improved over those obtained by AutoClass [37] which
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Fig. 8. (Left) Basis function class corresponding to natural images.
(Right) Basis function class corresponding to text images.

uses a Gaussian mixture model. The algorithm has also
been applied to blind source separation in nonstationary
environments, where it can switch automatically between
learned basis matrices in different environments [24].
Potential applications of the proposed method include
noise removal and filling in missing pixels. Another
application is the automatic detection of sleep stages by
observing EEG signals. The method can identify these
stages due to the changing source priors and their basis
matrices.

This method provides greater flexibility than Gaussian
mixture models in modeling structure in high-dimensional
data and has many potential applications.
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APPENDIX A

DEeRIVATION OF THE ICA MiXTURE MODEL
ALGORITHM

We assume that p(X|©) as given by (1) is a differentiable
function of ©. The log-likelihood L is then

T
L= logp(x|O)

t=1

(13)

and using (2), the gradient for the parameters of each class k
is

T
Vﬁk Zp Vekp(xt|@)

T Vo, |31, p(xe| Cr, 01)p(Ch)

; [ — p(x|0©) } )

Zvakp (%4 C, 01)p(Ch)

= the)

Using the Bayes relation, the class probability for a given
data vector x; is

p(x¢[0k, Ci)p(Ci)

Cilxt,0) = . 15
PO O) = el Cop(C) (18)
Substituting (15) in (14) leads to
T
Vo, p(x¢|0k, Cr)p(Cr)
Vo, L = Crl|xt,0) —
O ; ( k|xt ) p(xt|0k;,ck;)p(0k) (16)

Mq

(Cklxta )vek logp(xthk, ek)

t
The log-likelihood function in (16) is the log-likelihood
for each class. For the present model, the class log-

likelihood is given by the log-likelihood for the standard
ICA model:

Il
—

p(st)
| det Al

=logp(A;" (x; —

log p(x¢|0x, C,) =log an)

bi)) — log | det Ag|.

Gradient ascent is used to estimate the parameters that
maximize the log-likelihood. The gradient parameters for
each class are the gradient of the basis functions and the
gradient of the bias vector Vy L ={Va,L,VyL}. We
consider each in turn.

A.1 Estimating the Basis Matrix
Adapt the basis functions A}, for each class with (16).

T
Va,L =Y p(Cilxi,0)Va, log p(x:|Cy, b)-

t=1

(18)

The adaptation is performed by using gradient ascent with
the gradient of the component density with respect to the
basis functions giving

AA; x p(Cilxt, ©)Va, log p(x¢|Ck, 6k). (19)

In the basis functions adaptation, the gradient of the
component density with respect to the basis functions A,
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TABLE 1
Comparing Coding Efficiency
Test data (bits/pixel)
Data set and model | Nature | Text | Nature and Text
ICA mixtures 4.7 5.2 5.0
Nature-adapted ICA 4.7 9.6 7.2
Text-adapted ICA 5.0 5.2 5.1
Nature- and text-adapted ICA 4.8 5.3 5.1
PCA 6.2 6.0 6.1

Coding efficiency (bits per pixel) of five methods is compared for three test sets. Coding precision was set to 7 bits (Nature: o, = 0.016 and

Text: o, = 0.029).

is weighted by p(Ci|x:,©). This computation for
Va, log p(x¢|Cy, 0),) will be further detailed in Appendix B.

A.2 Estimating the Bias Vectors
We can use (16) to adapt the bias vectors by, for each class.

T
Vi, L =Y p(Cilxt, ©) Vi, log p(x:|Ci, b). (20)
t=1

The adaptation is performed by using gradient ascent with
the gradient of the component density with respect to the
bias vector by, giving

Aby, o< p(Cy|x¢, ©) Vi, log p(x|Cy, 0y,). (21)

Using (17) in (21), we can adapt by, as follows:

Aby, o p(Cilx¢, ©) Vi, [log p(A; ' (x; — by)) — log | det A].
(22)
Instead of using the gradient, we may also use an approx-

imate method for the adaptation of the bias vectors. The
maximum likelihood estimate © must satisfy the condition

T
> " p(Cilxt, ©) Vo, log p(x:|Cy, ;) = 0,

t=1

k=1,...,K.

(23)
We can use (23) to adapt the bias vector or mean vector by,

Vp, L =0

a (24)
Zp(cﬂxt, ©)Vp, log p(x|0x, Cy) = 0.

t=1

Substituting (17) into (24) shows that the gradient of the first
term in (17) must be zero. From this, it follows that

Vi, log p(A; (% — by)) = 0. (25)

Assuming that we observe a large amount of data x; and
the probability density function (p.d.f.) of the prior p(s;) is
symmetric and differentiable, then logp(s;) will be sym-
metric as well and the bias vector can be approximated by
the weighted average of the data samples

_ Zt x:p(Crxs, ©)

b, == — - ' -
" p(Cilx ©)

(26)

APPENDIX B

ICA LEARNING ALGORITHM
The gradient of the log component density for each class
log p(x¢|C}, ;) can be computed using ICA. This section

sketches the ICA learning algorithm in [17] and [22].
Assume that there is an M-dimensional zero mean vector

for each class.® s; = [s1(t), - -,sM(t)]T, whose components
are mutually independent. The vector s; corresponds to M
independent scalar-valued source signals s;;. We can write
the multivariate p.d.f. of the vector as the product of
marginal independent distributions

i) = [ s (27)

A data vector x; = [z,(t), -, 27(t)]" is observed at each

time point ¢, such that

Xt = ASt7 (28)

where A isa N x M scalar matrix. As the components of the
observed vectors are no longer independent, the multivariate
p-d.f. will not satisfy the product equality of (27).

8. For simplicity, we have omitted the class index k for the derivation of
the ICA learning rule.
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The goal of ICA is to find a linear transformation W of
the dependent sensor signals x that makes the outputs u as
independent as possible

u = WXf = WASt, (29)

so that u is an estimate of the sources. The sources are
exactly recovered when W is the inverse of A up to a
permutation and scale change.

The learning algorithm can be derived using the
maximume-likelihood estimation (MLE). The MLE approach
to blind source separation was first proposed by Gaeta and
Lacoume [14], Pham and Garrat [36], and was pursued
more recently by MacKay [30], Peralmutter and Parra [34],
and Cardoso [8]. The probability density function of the
observations x can be expressed as [33], [2]:

p(x) = | det(W)|p(u),

where p(u) = [T, pi(u;) is the hypothesized distribution of
p(s). The log-likelihood of (30) is

(30)
L(u, W) = log | det(W)| + i:logpi(ui). (31)

Maximizing the log-likelihood with respect to W gives a
learning algorithm for W [5]:

AW o [(W)™ = p(w)x] (32)
where
anw) () Optux) T
o =~ {‘ pun) T M} -

An efficient way to maximize the log-likelihood is to follow
the “natural” gradient [1]:

OL(u, W)
oW

as proposed by Amari et al. [3] or the relative gradient,
Cardoso and Laheld [10]. Here, W W rescales the gradient,
simplifies the learning rule in (32) and speeds convergence
considerably. It has been shown that the general learning
algorithm in (34) can be derived from several theoretical
viewpoints, such as MLE [34], infomax [5], and negentropy
maximization [18]. Lee et al. [21] review these techniques
and show their relation to each other.

The parametric density estimate p;(u;) plays an essential
role in the success of the learning rule in (34). Local
convergence is assured if p;(u;) is an estimate of the true
source density [36]. For example, the sigmoid function used
in Bell and Sejnowski [5] learning algorithm is suited to
separating super-Gaussian sources, i.e., p.d.f.s that have
heavier tails than the Gaussian density.

A way of generalizing the learning rule to sources with
either sub-Gaussian or super-Gaussian distributions is to
derive a separate learning rule for sub-Gaussian and super-
Gaussian components. A symmetric strictly sub-Gaussian
density can be modeled using a symmetrical form of the
Pearson mixture model [35] as follows: [17], [16].

AW W'W = [I-puu’|W  (34)
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plu) = 5 (N %) + N(=p,0%)),

where N(u,0?) is the normal density with mean p and
variance o2. For u = 0, p(u) is a Gaussian model, otherwise
p(u) is bimodal. Setting u =1 and ¢ =1, (33) reduces to
(17]

(35)

o(u) = u — tanh(u). (36)

In the case of unimodal super-Gaussian sources, we adopt

the following density mode
p(u) o< N(u)sech?(u), (37)

where N(u) is a zero-mean Gaussian density with unit
variance. The nonlinearity ¢(u) is now

51(;('u>
u) = — -2~ =y + tanh(u). 38
olu) =~ (u) (39)
The two equations can be combined as,
AW  [I - K tanh(u)u” — uu’ |W
super-Gaussian (39)

{ ki=1

ki=—1
where k; are elements of the N-dimensional diagonal matrix
K. The k;s can be derived from the generic stability analysis

sub-Gaussian,

[9] of separating solutions. This yields the choice of k;s used
by Lee et al. [22],

k; = sign (E{sechz(si,t)}E{s?t} - B{ [tanh(siyt)]si,t}), (40)
which ensures stability of the learning rule [22].

B.1 ICA Mixture Model Learning Rules
We can write (39) and (40) in terms of the basis functions for
each class Ay, in (19)
AA; x p(Cilx:, ©) Ay [I — Ktanh(sk)skT, - skskT,}, (41)
where
S = A;l(xt — bk)7 (42)

and

ks = sign(E{sech?(sk,i,t)}E{s;i_t} - E{[tanh(gk,i,t)]sk,i,t}).

(43)
The source distribution is super-Gaussian when k;; = 1 and
sub-Gaussian when kj; = —1. The adaptation of the log
prior logp(s;) can be approximated as follows:
N 2.,
log p(sys) o< — ; (kkz log(cosh s¢) — T[> (44)

These are the equations used for unsupervised classifica-
tion and automatic context switching in the examples given
in the text.

For the learning of image codes, a Laplacian model was
used to learn sparse representations. The simplified learn-
ing rule uses (19) and (45).
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AA; x p(Crlxy, ©) Ay [I - sign(sk)sg]. (45)
The log prior simplifies to
Laplacian prior. (46)

log p(sg) < — Z skl
7
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